

CARD-CDC-40 MODBUS OUTPUT OPTION CARD

MANUAL

1. DESCRIPTION	2
2. MODBUS SPECIFICATIONS	2
2.1. Types	
2.2. Isolation to sensor & user input commons	2
2.3. Baud rate	2
2.4. Data format	2
2.5. Parity	2
2.6. Address	
2.7. Transmit delay	
3. INSTALLING AN OPTION CARD	
4. ORDERING INFORMATION	
5. RS485 COMMUNICATIONS	
6. SERIAL SET-UP DIP SWITCH OPERATION	
6.1. Baud rate switch selection	
7. MODBUS SUPPORTED FUNCTION CODES	
7.1. Coil functions	
7.2. Hold registers functions	
7.3. Other supported functions	
8. MANUAL MODE DESCRIPTION	
8.1. (CSR) Control Status Register [40021]	
8.2. (AOR) Analog Output Register	
9. HOLDING REGISTERS	
10. COIL TABLE	
11. COIL DESCRIPTIONS	
11.1. Coils 1-4: Output Coils	
11.2. Coils 5-10: Reset Coils	
11.3. Coils 11-29: Polling Coils	
11.4. Coils 21-29: Terminating Coils	
11.5. Coil 30: Response Delay	8

1. DESCRIPTION

This product bulletin covers the MODBUS Communication Card for the PAX family of Meters. The card will allow the Meters to transmit Display Values, Setpoints and Reset Values via MODBUS RS485 communication, in the RTU and ASCII modes.

2. MODBUS SPECIFICATIONS

2.1. Types

RS485; RTU and ASCII MODBUS modes

2.2. Isolation to sensor & user input commons

500Vrms for 1 min. Working Voltage: 50V. Not isolated from all other commons.

2.3. Baud rate

300 to 38400 Bauds

2.4. Data format

7/8 bits

2.5. Parity

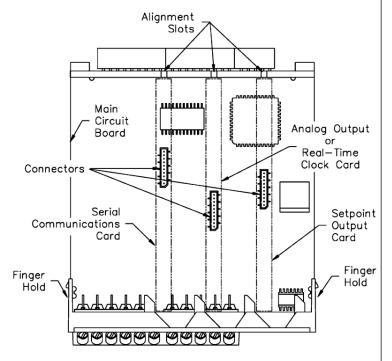
No, Odd or Even

2.6. Address

1 to 247

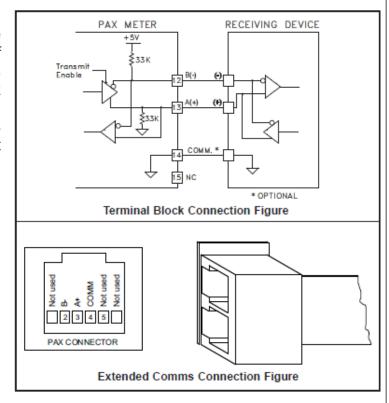
2.7. Transmit delay

Programmable; see transmit delay explanation.


3. INSTALLING AN OPTION CARD

Caution: The option and main circuit cards contain static sensitive components. Before handling the cards, discharge static charges from your body by touching a grounded bare metal object. Ideally, handle the cards at a static controlled clean workstation. Also, only handle the cards by the edges. Dirt, oil or other contaminants that may contact the cards can adversely affect circuit operation.

Warning: Exposed line voltage exists on the circuit boards. Remove all power to the meter AND load circuits before accessing the unit.

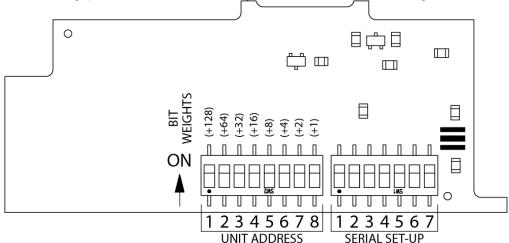

- 1. Remove the main assembly from the rear of the case. Squeeze the finger holds on the rear cover, or use a small screwdriver to depress the side latches to release it from the case. It is not necessary to separate the rear cover from the main circuit card.
- 2. Locate the option card connector for the serial communication card. Hold the unit by the rear cover, not the display board, when installing an option card.
- 3. Install the option card by aligning the option card with the slot in the rear cover. Be sure the connector is fully engaged and the tab on the option card rests in the alignment slot on the display board.
- 4. Slide the assembly back into the case. Be sure the rear cover latches fully into the case.

4. ORDERING INFORMATION

MODEL NO.	<u>DESCRIPTION</u>	PART NUMBER	
CARD CDC	MODBUS Output Card	CARD-CDC-40	
CARD-CDC	MODBUS Output Card with RJ11 Connector	CARD-CDC-4C	•

5. RS485 COMMUNICATIONS

The RS485 communication standard allows the connection of up to 32 devices on a single pair of wires, distances up to 4,000 ft. and data rates as high as 10M baud (the PAX is limited to 19.2k baud). The same pair of wires is used to both transmit and receive data. An RS485 bus is therefore always half-duplex, that is, data cannot be received and transmitted simultaneously.



MA-CARD-CDC-40_EN Page 3 on 8 Rev: 06/06/2012

6. SERIAL SET-UP DIP SWITCH OPERATION

Serial port configuration is accomplished through two banks of DIP switches on the MODBUS card. The bank of 8 switches sets the Unit Address, the bank of 7 switches sets the Serial port parameters (ASCII/RTU, 7/8 bits, Parity, and Baud rate). Changes to the switch settings are only detected on power-up of the unit. After changing a switch setting, power to the unit must be cycled for the new switch setting to take effect.

Both unit address and serial set-up are set via DIP switches on the MODBUS option card. See the DIP switch setting table for more details on these DIP switches.

For the Unit Address bank, the high order bit is switch 1, and the ON position is a '1', the OFF position is a '0'. Legal unit addresses are 1 to 247. When a Unit Address of 0 is selected, the card responds to Unit Address 1. When a Unit Address of 248 through 255 is selected, the card responds to Unit Address 247. For the serial bank, the following settings apply:

<u>SWITCH</u>	SETTING AVAILABLE		FACTORY SETTINGS
1	OFF: ASCII	ON: RTU	RTU
2	OFF:7 bits	ON: 8 Bits	8 Bits
3	OFF: None	ON: Parity	No Parity
4	OFF: Even	ON: Odd	OFF
5	Baud Rate	See Baud	
6	Baud Rate	Switch Selections	9600
7	Baud Rate	SWILCH SELECTIONS	

6.1. Baud rate switch selection

	<u>5</u>	<u>6</u>	<u>7</u>
38400	ON	ON	ON
19200	ON	ON	OFF
9600	ON	OFF	ON
4800	ON	OFF	OFF
2400	OFF	ON	ON
1200	OFF	ON	OFF
600	OFF	OFF	ON
300	OFF	OFF	OFF

MA-CARD-CDC-40_EN Page 4 on 8 Rev: 06/06/2012

7. MODBUS SUPPORTED FUNCTION CODES

7.1. Coil functions

FC01: Read Coils

FC05: Force Single Coil, FC15: Force Multiple Coils.

- 1. Valid coil addresses are 1-49.
- 2. Block starting point can not exceed coil 49.

7.2. Hold registers functions

FC03: Read Holding Registers.

FC06: Preset Single Register, FC16: Preset Multiple Registers.

- 1. Valid register address are 40001 40039, 40041, 40042, 41001 41010.
- 2. Up to 16 registers can be requested at one time.
- 3. Block starting point can not exceed the register boundaries.
- 4. Holding registers are a mirror of Input registers (FC04).
- 5. Unused registers will return a value of HEX <8000>.
- 6. If a register is implemented, but does not exist for a particular unit configuration (such as SP3, SP4) a value of HEX <0000> will be returned.
- 7. Registers 41001 41010 contain the slave ID. See FC17.
- 8. Broadcast write is supported for FC06 & FC16. Register writes using address "0" will be recognized by the MODBUS card, regardless of address DIP switch setting.

7.3. Other supported functions

FC04: Returns the same values as FC03, except the register number starts with "3" (Ex: Pax Input Hi is 30001)

FC08 – Fetch Comm. Event Counter.

The MODBUS response breaks down as follows:

":010804"<TOT HI><TOT LO><GOOD HI><GOOD LO>XX<CR><LF>

The "TOT HI" and "TOT LO" values are the total number of messages that were received, that started with the card's address. The "GOOD HI" and "GOOD LO" are "good" messages (correct address, parity, and checksum). The values are reset on power up and every time the FC08 function is requested.

FC17 - Report Slave ID.

The following is sent upon FC17 request: Unit Address, 17 (FC code), RLC-PAX? 00?0, 0100 (for code version 1.00), 16 (number of read supported registers), 16 (number of write supported registers), 00 (number of registers available for GUID/Scratch pad memory), checksum of the string.

8. MANUAL MODE DESCRIPTION

8.1. (CSR) Control Status Register [40021]

The Control Status Register is used to directly control the meter's outputs (setpoints and analog output). The register is bit mapped with each bit position within the register assigned to a particular control function. The control functions are invoked by writing to each bit position. The bit position definitions are:

Bit 0: SP1 Output

Bit 1: SP2 Output 0 = output off Bit 2: SP3 Output 1 = output on

Bit 3: SP4 Output

Bit 4: Manual mode

0 = automatic mode

1 = manual mode

Bit 5: Always stays 0, even if 1 is sent.

Bit 7: Always stays 0, even if 1 is sent.

In Manual Mode, the setpoint outputs are defined by the values written to bits b0, b1, b2, b3; and the analog output is defined by the value written to the AOR. Internal control of these outputs is then overridden. In automatic mode, the setpoint outputs can only be reset off.

8.2. (AOR) Analog Output Register

The Analog Output Register controls the analog output of the meter. The manual mode must first be engaged by setting bit 4 of the CSR. The range of values of this register is 0 to 4095, which corresponds to 0 mA, 0 V and 20 mA, 10 V; respectively. If a value larger than 4095 is written to the AOR register, 4095 will be loaded. The table lists correspondence of the output signal with the register value.

REGISTER	<u>OUTPUT</u>	SIGNAL*
VALUE	I (mA)	V (V)
0	0.000	0.000
1	0.005	0.0025
2047	10.000	5.000
4094	19.995	9.9975
4095	20.000	10.000

*Due to the absolute accuracy rating and resolution of the output card, the actual output signal may differ 0.15% FS from the table values. The output signal corresponds to the range selected (20 mA or 10 V)

Writing to this register while the meter is in the manual mode causes the output signal to update immediately. While in the automatic mode, this register may be written to, but the output will not update until the meter is placed in manual mode.

Examples:

- 1. Set output to full scale:
 Value to write to holding register 40020
- 2. Set output to zero scale:
 Value to write to holding register 40020

9. HOLDING REGISTERS

Values less than 65,535 will be in (LO word). Values greater than 65,535 will continue into (HI word). Negative values are represented by two's complement of the combined (HI word) and (LO word). Numeric data is limited to value -19999 to 99999. Any unused register will return a value of HEX <8000>.

HOLDING REGISTER		<u>ACCESS</u>
40001	Input (HI)	Read only
40002	Input (LO)	Read only
40003	Total (HI)	Read only
40004	Total (LO)	Read only
40005	Min (HI)	Read only
40006	Min (LO)	Read only
40007	Max (HI)	Read only
40008	Max (LO)	Read only
40009	SP1 (HI)	Read/Write
40010	SP1 (LO)	Read/Write
40011	SP2 (HI)	Read/Write
40012	SP2 (LO)	Read/Write

MA-CARD-CDC-40_EN Page 6 on 8 Rev: 06/06/2012

HOLDING REGISTER		ACCESS
40013	SP3 (HI)	Read/Write
40014	SP3 (LO)	Read/Write
40015	SP4 (HI)	Read/Write
40016	SP4 (LO)	Read/Write
40017	Polling1	Read/Write
40018	Reset	Read/Write
40019	TRX Delay1	Read/Write
40020	AOR ²	Read/Write
40021	CSR	Read/Write
40022	Terminate1	Read/Write

10. COIL TABLE

Any unused register will return a value of HEX <8000>.

COIL ADDRESS	COIL NUMBER	COIL NAME	MIRROR REGISTER
01	0	SP1 Output	40021 (bit 0)
02	1	SP2 Output	40021 (bit 1)
03	2	SP3 Output	40021 (bit 2)
04	3	SP4 Output	
05	4	Reset max	40018 (bit 2)
06	5	Reset min	
10	9	Reset total	40018 (bit 4)
11	10	Poll input	40017 (bit 0)
12		Poll total	
13		Poll max	
14	13	Poll min	40017 (bit 3)
15	14	Poll SP1I	40017 (bit 4)
16	15	Poll SP2	40017 (bit 5)
17	16	Poll SP3	40017 (bit 6)
18	17	Poll SP4	40017 (bit 7)
19	18	Poll AOR	40017 (bit 8)
20	19	Poll CSR	40017 (bit 9)
21	20	Team total	40022 (bit 0)
22	21	Team max	40022 (bit 1)
23	22	Team min	
24	23	Team SP1	40022 (bit 3)
25	24	Team SP2	40022 (bit 4)

¹ TRX delay is the minimum time from the reception of the last character in the MODBUS Query until the response is started. The minimum delay value is equal to 2 character times (2 msec min.). The user can increase the delay time by writing to the TRX Delay register. Any value written to the TRX Delay register that is less than the value calculated at power up will be ignored. The TRX Delay value is stored in EEPROM memilibre used as the TRX Delay value and will be written to the TRX Delay register.

MA-CARD-CDC-40_EN Page 7 on 8 Rev: 06/06/2012

² If a value larger than 4095 is written to the AOR register, 4095 will be loaded.

COIL ADDRESS	COIL NUMBER	COIL NAME	MIRROR REGISTER
26	25	Team SP3	40022 (bit 5)
27	26	Team SP4	40022 (bit 6)
28	27	Team AOR	40022 (bit 7)
29	28	Team CSR	40022 (bit 8)
30	29	Response delay	40017 (bit 10)

11. COIL DESCRIPTIONS

11.1. Coils 1-4: Output Coils

These coils are used to read or change the states of the Setpoint Outputs. To change the state of the output(s), the output(s) must be in manual mode. Refer to the CSR or MMR/SOR registers in the Manual Mode Description section.

11.2. Coils 5-10: Reset Coils

These coils are used to perform the Reset command for the values listed. Forcing the coil "on" causes the appropriate value in the unit to be reset. The coil is cleared after the command is executed, therefore, the coil value read will always be 0 (zero).

11.3. Coils 11-29: Polling Coils

The MODBUS card is continually requesting values from the meter. The polling bit coils determine what values are requested during each loop. Setting the coils to "1" enables the card to poll that particular value. A "0" value disables it. Turning polling coils off allows the user to request fewer values and therefore decreases the internal loop time, which allows the values that are polled to be updated more often.

If a MODBUS read is issued for any value, that value is automatically updated to the latest value, regardless of whether the polling bit is on or off. On power up, all values are updated regardless of Polling bit settings. Polling coil values are saved in EEPROM memory. Factory settings are "on" for all Polling coils.

TYPICAL UPDATE

TIMES**

All values (10) – 1,15ms
5 values – 500ms
1 value – 100ms

**Update time is the typical time to update the internal memory provided no MODBUS requests are incoming.

11.4. Coils 21-29: Terminating Coils

This set of coils determines what terminating character is sent to the meter when a write command is executed. If the flag is 0, a \$ is used as the terminating character and the value is not saved to EEPROM memory in the meter. If the flag is 1, an * is used as the terminating character and the value is saved to EEPROM memory.

11.5. Coil 30: Response Delay

When a write command is issued, the new value is written to the meter. If the coil is off, the MODBUS write response is not issued until the value is read back from the meter. For MODBUS reads, if a polling coil is off, the response is not issued until the latest value is read back from the meter. If the coil is set "on" the MODBUS response is issued as soon the received command is complete. The write coil is saved in EEPROM memory. Factory setting is on.